Zinsrechnung

Hier bekommen Sie Hilfe, Informationen und Beispiele zum Thema Zinsrechnung.

Die Zinsrechnung ist ein mathematisches Verfahren, mit der man ermitteln kann wie das angelegte Geld mit einem möglichst guten Zinssatz über die Jahre steigt. Damit Sie Ihr Endkapital ermitteln können, müssen folgende Variablen bekannt sein: Anfangsbestand, Zinssatz, Laufzeit. Somit können Sie den Verlauf Ihrer Guthabentwicklung für jedes Jahr verfolgen, dass heißt wie hat sich das angelegte Startkapital im ersten Jahr entwickelt, im zweiten Jahr u.s.w. und wie hoch sind die anfallenden Zinsgutschriften und die Summe der Zinsen und schließlich das daraus resultierende Gesamtkapital. Doch wofür braucht man diese spezielle Rechnung eigentlich?

Die Zinsrechnung kommt bspw. bei einer Baufinanzierung/ Immobilienfinanzierung oder auch bei einer Kreditfinanzierung zum Einsatz. Bei einer Kreditfinanzierung wären Sie als Kreditnehmer sicher an einem niedrigen Zinssatz interessiert, damit der zurück zu zahlende Kredit beziehungsweise die monatliche Belastung dann später nicht zu hoch ausfällt.

Bei der Zinsrechnung unterscheidet man in die einfache Zinsrechnung beispielsweise zur Berechnung von Krediten und die Zinseszinsrechnung, mit der Kreditinstitute häufig rechnen. An einfachen Beispielen werden ich Ihnen nun die beiden Methoden verdeutlichen. Dafür gebe ich Ihnen zunächst eine Übersicht der Variablen die wir zur Berechnung für beide Berechnungsmethoden benötigen. Im Anschluss an die Berechnung sehen Sie den Unterschied der beiden Berechnungen und können diese dann voneinander unterscheiden.

Anfangskapital = Ko (nach 0 Jahren)
Endkapital = Kn (nach n Jahren)
Laufzeit = n
Zinssatz = p (es wird davon ausgegangen, dass ein Jahr 360 Tage hat)
Zinssatz als Dezimalangabe = i= p/100
Zinsfaktor = q = 1+i = 1+p/100
Formel für die einfache Zinsrechnung:
Kn = Ko + Ko x n x i oder auch Kn = Ko x (i x n +1)

Beispiel: Das Anfangskapital beträgt 5000 Euro und soll über 5 Jahre angelegt werden mit einem Zinssatz von 3 %. Setzt man das Anfangskapital in die Formel ein, die wir uns oben angeschaut haben, erhalten wir folgende Werte als Ergebnis:

Ko = 5000, n = 3, i = 5 % oder 0,05
Kn = 5000 (0,05 x 3 +1) = Kn = 5.750 Euro

Das Endkapital nach 3 Jahren und einem Zinssatz von 5 % über diese Zeit beträgt 5.750 Euro. In der gesamten Zeit sind 750 Euro Zinsen auf das angelegte Kapital angefallen.

Bei der Zinseszinsrechnung werden die Zinsgutschriften in jedem Jahr auf das angelegte Kapital aufgeschlagen und mitverzinst, diese Rechnungen werden Ihnen nun in einem ganz einfachen Beispiel ganz genau vorgestellt und vorgerechnet:

Die Formel lautet: Kn = Ko x (1+i)^ n = Ko = q ^n

Gehen wir wieder von demselben Beispiel wie bei der einfachen Zinsrechnung aus:

Ko= 5000, n = 3, i = 5 % bzw. q = 1+0,05
Kn = 5000 x 1,05 ³ = 5.788,13 Euro.

Nach 3 Jahren erhalten wir bei einer Verzinsung von 5 % und einer Verzinsung auf den Zinseszins ein Endkapital von 5.788,13 Euro. Die Gesamtzinsen betragen 788,13 Euro.

Gegenüber dem Beispiel bei der einfachen Zinsrechnung sehen Sie nun, dass das angelegte Startkapital nun um 788,13 Euro gestigen ist. Vorher waren es 750 Euro. Das ergibt eine Mehrwert von 38,13 Euro. Wie Sie sehen muss die Zinsrechnung garnicht schwierig sein.